Instructor : Dr. Mark Llewellyn
markl@cs.ucf.edu
HEC 236, 407-823-2790
http://www.cs.ucf.edu/courses/cop3223/spr2009/sectionl

School of Electrical Engineering and Computer Science
University of Central Florida

COP 3223: C Prog i i © Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

So far in this course, we’ve done very little with characters,
although we have used them a little bit in a few of the programs in
the notes. The reason for this is that, by themselves, characters are
not terribly useful in many programs.

However, strings of characters, or simply strings, are quite useful

In many applications.

A string Is a series of characters treated as a single unit.

Some programming languages, such as Java, define a special
string type, C does not have a special string data type.

A string in C is an array of characters ending with the null
character (*\ 0’ —used to mark the end of the string). A string is

accessed via a pointer to the first character in the string.

COP 3223: C Programming (Strings — Part 1)

Page 2

© Dr. Mark J. Llewellyn

s

Fundamentals of Strings And Characters In C

Thus, In C, it Is appropriate to say that a string iIs a pointer. In
fact, 1t is a pointer to the string’s first character. The first
character is Iin index position 0. In this sense, strings are like
arrays, because an array Is also a pointer to its first element.

In C it Is possible to define both string literals and string variables.

A string literal (also called a string constant) is a sequence of
characters enclosed within double quotes, such as “Please
enter an 1nteger value:”.

We’ve used string literals quite a lot in our programs this

semester. String literals commonly appear as format strings in
callsto printf or scanft.

What is actually being passed to scanf or printf when a

string literal is sent to the function?
#

COP 3223: C Programming (Strings — Part 1) Page 3 © Dr. Mark J. Llewellyn @3'

Fundamentals of Strings And Characters In C

String literals are treated as arrays by the C compiler, so when the
C compiler encounters a string literal of length n in a program, it
sets aside n+1 contiguous bytes of memory for the string. The n
locations contain the characters in the string and the n+1 location

contains the null character (*\0").

The null character (\0’) is a byte whose bits are all zero (i.e., 00000000), so it is

represented by the \O escape sequence.

Do not confuse the null character (\O’) with the zero character (‘0’). The null character

has the ASCII code 0, while the zero character has the ASCII code 48.

Equivalents: ASCII Name C escape sequence

nul \O
bel \a
bs \b
ht \t
np \f
Nl \n
cr \r

meaning
null byte

bell character
backspace
horizontal tab
form feed

new line
carriage return

COP 3223: C Programming (Strings — Part 1) Page 4

© Dr. Mark J. Llewellyn

7 bit ASCII Table (27 =128)

Char Dec Oct Hex | Char Dec Octc He=x
(mnal} O 0000 Ox00 | (=p}) 32 0040 O=x20
(=ah}) 1 0001 Oox01 | ! 33 0041 O=x21
[=stx) 2 0002 Ox02 | ™ 34 0042 O=x22
[etx) 3 0003 Ox03 | # 35 0043 O=x23
(ect) 4 0004 Ox042 | £ 36 0044 O=x24
{ena) 5 0005 Ox05 | % 37 0045 O=x25
(ack) & 0006 Ox06 | & 38 0D46 O=x26
(bel}) 7 0007 OxO0T7 | ° 39 0047 O=x27
(b=} 8 0010 OxO08 | 40 Q0050 O=x28
(hit) S 0011 Oox0% |) 41 Q0051 O=x29
(1} 10 0012 Ox0a | = 42 0052 OxZa
[wi) 11 0013 O=x0b | + 43 0053 O=xZb
(np} 12 0014 Ox0= | ., 44 0054 O=xZc
(cx) 13 0015 Oox0d | - 45 0055 O=xz2d
[=a) 14 0016 Ox0= | . 46 0056 OxZe
(=4} 15 0017 Ox0f | S 47 0057 O=x2f
(dle}) 16 0020 O0x10 | O 48 0060 O=x30
(dcl) 17 00231 O0x11 | 1 49 0061 O=x31
(dc2) 18 0022 Ox12 | 2 50 0062 O=x32
(dc3) 19 0023 Ox13 | 3 51 0063 O=x33
(dc4d) 20 0024 Ox14 | 4 52 0064 0O=x34
(nak) 21 0025 O0x15 | & 53 00De5 0O=x35
(=ym) 22 0026 O0xl1e | & 54 Q0066 0O=x36
(etk) 23 0027 O0x1T7 | 7 E5 00&T O=x37
(can) 24 0030 Ox18 | & 56 0070 Ox38
[em) 25 0031 Oox1%S | &5 &7 0071 O=x39
({=ub} 26 0032 Oxla | : E8 0072 0Ox3a
(esc) 27 0033 Ooxl1b | E9 0073 Ox3b
[£=) 28 0034 Oxlc= | < &6d 0074 Ox3c
(g=) 29 0035 O=xld | = 61 0075 O=x3d
(r=) 320 0036 Oxle | == 62 0076 Ox3e
(u=s) 321 0037 Ox1Ff | @ 63 0077 O=x3Ff

= SN EqdHNNONOEE N A gHIDMEQDONE®

Cco Hex | Char Dec
0100 O=x40 | ¢ k=1
0101 Ox41 | a =T
0102 Ox42 | b o8
0103 Ox43 | o= EE
0104 Ox44 | d 100
0105 O=x45 | e 101
0106 Ox4e | £ 102
0107 Ox47 | g 103
0110 Ox48 | h 104
01131 oO=x49 | 4i 105
0112 Ox4a | 3 106
0113 Ox4b | k 107
0114 Ox4d4c= | 1 108
0115 Ox4d | m 109
0116 Ox4de | n 110
0117 Ox4f | o 111
0120 Ox50 | B 112
01231 Ox51 | g 113
0122 Ox52 | x© 113
0123 Ox53 | = 115
0124 O=x54 | © 11&
0125 Ox55 | u 117
0126 Ox56 | W 118
0127 Ox57 | w 115
0130 Ox58 | = 120
0131 Ox59 | w 121
0132 Ox5a | = 122
0133 Ox5b | { 123
0134 O=x5c= | | 124
0135 Ox5d | ¥ 125
0136 Ox5e | -~ 126
0137 Ox5f | (del} 127

COP 3223: C Programming (Strings — Part 1)

Page 5

© Dr. Mark J. Llewellyn

[P

Fundamentals of Strings And Characters In C

Consider the string literal *“Hello”. This will be stored in an
array of six characters as shown:

H e I I 0 \O

0 1 2 3 4 5

An empty string literal, denoted as: ™", will be stored as a single
null character. | \g

0

Since a string literal is stored as an array, the compiler treats it as a
pointer of type char *. Both printf and scanf, expect a
value of type char * as their first argument.

.
COP 3223: C Programming (Strings — Part 1) Page6 © Dr. Mark J. Llewellyn §j

lead & character.c ﬂmmMHE%Mmﬂlwm%MLl

1 //5trings In C - Part 1 - samp
2 //March 17, 2009 FWritten by
3

4 $include <stdio.h>

5 #define STRING "Hello, there!
b

? int main{)

8 {

9 int 1i; loop control

108

11 printf (STRING) ;

12 printf(™\n\n" N\

13 for (i=0; i Q14 +i)
14 printf ("3TRI

15

16

17 printf ("\n\n");

18 syatem("FATSE") ;

19 return 0;

28 }//end main function

21

i, STRING[i]):

The address
of

B C:\Courses\COP 3223 - C Programming... lE

ello. theret

TRINGIA]
TRINGI1]
TRINGI2]
TRINGI31]
TRINGI4]
TRINGIS]
TRINGIG]
TRINGI?]
TRINGI8]
TRINGI?]
TRINGI1@]
TRINGI111
TRINGI121
TRINGI131

" D e e 5D 22

| | | | | I | | A | B 1|
o =

ress any key to

STRINGI[O]

IS passed to
printf

J

T~

continue .|. .

when the call
IS made.

COP 3223: C Programming (Strings — Part 1)

Page 7

© Dr. Mark J. Llewellyn

Fundamentals of Strings And Characters In C

It Is important to understand the difference between a string literal

and a character constant.

InC, ‘a’ and “a”, are two very different beasts.

‘a’ Is a character constant, which occupies one byte in memory.
The value stored in the memory location is (97),, = (141) =

(01100001), .

0110 0001

“a” 1sastring literal, which will be stored in an array containing

two locations, the first containing the ASCII code for the ‘a’
character and the second containing the null character.

0110 0001 0000 0000

0 1

COP 3223: C Programming (Strings — Part 1) Page 8

© Dr. Mark J. Llewellyn

7
()
S,

String Variables In C

While string literals are an important concept in C and
understanding how they work is important, from an application

point of view, string variables are much more important and
Interesting.

Since character strings always terminate with the null character, this means that you
must declare the size of arrays that are used to hold strings to be one larger than the
longest possible string of characters that the array might contain in order to allow room

for the terminating null character. You'll forget this so I'll remind you again later © !

The length of a string of characters is determined by the position
of the null character and not the size of the allocation of the array.
This means that there is no quicker way to determine the length of
a string than a character by character search for the null character.

”
COP 3223: C Programming (Strings — Part 1) Page 9 © Dr. Mark J. Llewellyn g);

Initializing A String Variable

A string variable can be initialized at the same time it is declared,
just as with other variables in C.

Thus, the declaration: char date[9] = “March 18”;

would produce:
M| a r c | h 1|8 \0

0 1 2 3 4 S5 6 7 8

Although the declaration and initialization makes “March 18~
appear as a string literal, it’s not. Instead, C views it as an
abbreviation for an array initializer, much in the same way that we
have done for integer arrays. In other words, we could have
written the declaration as:

Char date[g] — {\M/, \aI, \rI, \CI, \hI, \ I’ \11, \81, \\Ol};

#
COP 3223: C Programming (Strings —Part 1) Page 10 © Dr. Mark J. Llewellyn @j

Reading Strings Using scanf

Strings can be read into a character array using scanf in much

the same way that integers can be read into an integer array using
scant.

The conversion specifier for strings in C Is $s.

Assuming we had declared char name[10];. We could do
the following: scanf (“$s”, name) ;

Since name IS a character array and hence a pointer, the address
operator (&) Is not needed on the name variable.

The scanf function ignores leading white-space and the input
string Is terminated by any white-space.

The program on the following page illustrates using scanf to read
In a string of characters and print them out.

”
COP 3223: C Programming (Strings — Part 1) Page 11 = © Dr. Mark J. Llewellyn g);

read a character.c | string lieral example.c | input and reversing aname.c Using scanf to read strings.c

B8 C\Courses\COP 3225 - C Progra.. .=]

Enter your name: Mark "

4 $include <stdio.h>
L 3define MAX 10

b
?
8
?
18
11
12
13
14
15
16
17

18 }/

19

int main{()

{
char name[MAX]; //string to hold & name
printf ("Enter your name: ");
scanf("%3", name);
printf ("\n\n¥our name is: %3'\n", name);
printf{"\n\n"};
system("PAUSE"),;
retarn 0;

Your name is: Mark

Press any key to continue . . . _

a |
B C:\Courses\COP 3223 - C Progra,. (= i=h e

Enter your name: Kristi Camphell a

Your name is: Kristi

White
space
5
skipped

mrress any key to continue .

F

B C:\Courses\COP 3223 - C Wing...
Enter your name: Dehi Tonelli
Your name is: Debi

Press any key to continue . . . _

* |

COP 3223: C Programming (Strings — Part 1)

Page 12

© Dr. Mark J. Llewellyn

Character Arrays (Strings) Versus Character Pointers

« Consider the following two declarations:
char date[] = “March 18”;

char *date = “March 187;

« The first declares date to be an array of characters (a string).
The second declares date to be a pointer.

« Since arrays and pointers are so closely related in C, either version
of date can be used as a string. Any function that is expecting to

be passed a character array or character pointer will accept either
version of date as an argument.

« Do not make the mistake of thinking that both versions of date are
Interchangeable. They are not!

(.
COP 3223: C Programming (Strings — Part 1) Page 13 © Dr. Mark J. Llewellyn §J

Character Arrays (Strings) Versus Character Pointers

There are significant differences between these two declarations:
char date[] = “March 18”;

char *date = “March 187;

In the array version (the first one), the characters stored in date

can be modified, like the elements in any array. In the pointer
version (the second one), date points to a string literal, i.e.,

constant and as such cannot be modified.

In the array version, date IS an array name. In the pointer
version, date Is a variable that can be made to point to other
strings during the execution of a program.

#
COP 3223: C Programming (Strings — Part 1) Page 14 © Dr. Mark J. Llewellyn @j

Character Arrays (Strings) Versus Character Pointers

The declaration:
char *ptr;

causes the compiler to set aside enough space for a pointer that

will reference a character, not a string of characters. If we want
ptr to reference a string of characters, we’ll have to do it

explicitly as in:

char aString[10], *ptr;

ptr = aString;

once the second line is executed, ptr will now point to (contain
the address of) the first character in aString.

#
COP 3223: C Programming (Strings — Part 1) Page 15 © Dr. Mark J. Llewellyn @j

Character Arrays (Strings) Versus Character Pointers

. Is this ok?
char *ptr;
ptr[0] = ‘H';
ptr[1l] = ‘17,
ptr[2] = “\0O';
Answer: No! Since ptr has not been initialized, it is basically not

pointing to any location in memory. The behavior of such an
operation will be unpredictable, but not correct.

('
COP 3223: C Programming (Strings —Part 1) Page 16 © Dr. Mark J. Llewellyn gjj

Fundamentals of Strings And Characters In C

We’ll be examining many different string handling functions in
standard libraries in C over the next few days, as well as developing

some of our own string handling functions. For now, we’ll continue
touse scanf and printf for strings.

The example program on the next page uses a function to count the
number of valid characters in a string read in from the keyboard.

As an almost total aside, the longest non-coined, non-technical word in the
English language is: antidisestablishmentarianism which contains 28 letters. The
longest word in the Oxford dictionary is: Pseudopseudohypoparathyroidism at 30
letters. Although its Welsh not English, one of the longest names of a place in the
world is the 58-character name:
LIlanfairpwligwyngyllgogerychwyrndrobwllllantvsiliogogogoch

which is the famous name of a town on Anglesey, and island of Wales. The
longest technical word is: methionylthreon...isoleucine, the largest known protein

(consisting of 34,350 amino acids) more commonly known at Titin at 189,819
letters.

7

COP 3223: C Programming (Strings — Part 1) Page 17 © Dr. Mark J. Llewellyn gf

| determining the length of a word.c

4 $include «<stdio.h>
Fdefine HRK_LEHGTH 40

5
b
Y /S/function stringlength determines the number of wallid characters in & string
8 int stringlLenoth (char *aString)

?

{
18 int index = 0; /S35 counter
11
12 while (aString[index] '= *"\0") {
13 ++index;
14 YA/end while stmt
15 retorn index:
16 }//=nd stringlength function
17
18 int main()
19 ¢
208 char word[MAX LENGTH]: Fi8 word =sntered by the user
21 int length; S/ the number of wvalid charscters in the string
22
23 printf ("Enter a word of no more than 40 characters:n"):
24 g2canf ("£=", word);
25 printf(™\n") ;
26 length = stringlength (word) :
27 printcf ("You entered the word: %S.REFE contains %d characters.%n", word, length):
28
29 printf ("4Wn\n") ;
38 systcem("FATSE"™) ;
31 retorn O;

32 }//end main function

e
I ‘ Hesnurce&l |ﬂ]] Compile L-:ugl Qﬁj Del:uugl @ Find Flesult&l
| |Insert |F|eau:|_l,l. v

COP 3223: C Programming (Strings —Part 1) Page 18 © Dr. Mark J. Llewellyn

e KACOP 3223 - Spring 2009\COP 3223 Program Files\Strings in C - Part ... HEH

Enter a word of no more than 48 characters: N
upercalifragilisticexpialidocious =

You entered the word: supercalifragilisticexpialidocious.
It contains 34 characters.

Press any key to continue .

«| | oy

nter a word of no more than 48 characters:
ercedes

You entered the word: mercedes.
It contains 8 characters.

Press any key to continue . . . -

1| | A

COP 3223: C Programming (Strings —Part 1) Page 19 © Dr. Mark J. Llewellyn

Practice Problems

1. Write a program that reads in two strings and
then determines If the strings are the same or
not.

2. Write a program that uses the string length
function from the example program on page 18
In conjunction with another function which

reverses the order of the characters in the string.
Thus the Input string: hel1o would be returned
as ol leh.

’

COP 3223: C Programming (Strings — Part 1) Page 20 © Dr. Mark J. Llewellyn g’)n

